Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0379520020180020183
Çѱ¹µ¶¼ºÇÐȸÁö
2002 Volume.18 No. 2 p.183 ~ p.190
Green Tea (-) Epigallocatechin-gallate Induces the Apoptotic Death of Prostate Cancer Cells
Lee Ji-enny

Jeong Won-Hun
Park Ji-Sun
Shin Mi-Kyoung
Sohn Hee-Suk
Park Rae-Gil
Abstract
The mechanism by which catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical mights of anti-tumor effects, (-)epigallocatechin-gallate (EGCG) of catechin was applied to human prostate cancer DU 145 cells. Cell viability was measured by crystal violet staining. Cell lysates were wed to measure the catalytic activity of caspases by using fluorogenic peptide: Ac-DEVD-AMC for caspase-3 protease, Z-IETD-AFC for caspase-8 protease, Ac-LEHD-AFC for caspase-9 protease as substrates. The equal amounts of protein from cell lysate was separated on SDS-PAGE and analyzed by western blotting with anti-Fas antibody, anti-FasL antibody, anti-BCL2 antibody and anti-Bax antibody. (-)EGCG induced the death of DUl45 cells, which was revealed as apoptosis shown by DNA fragmentation. (-)EGCG induced the activation of caspase family cysteine proteases including caspase-3, -8 and -9 proteases in DU145 cells. Also, (-)EGCG increased the expression of Fas and Fas ligand (FasL) protein in DU145 colls. The expression level of BCL2 was decreased in (-)EGCG treated DU145 cells, whereas Bax protein was increased in a time-dependent manner. We suggest that (-)EGCG-induced apoptosis of DU145 cells is mediated by signaling pathway involving caspase family cysteine protease, mitochondrial BCL2-family protein and Fas/FasL.
KEYWORD
Prostate cancer, Apoptosis, Fas/FusL, BCL2/Bax
FullTexts / Linksout information
 
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed